
COMS 6901 E

Algebraic Data Types in SSLANG

Emily Sillars

12/22/21

Abstract

SSLANG (Sparse Synchronous Language) is a concrete implementation and extension of the
Sparse Synchronous Model proposed by Edwards and Hui in the paper of the same name. A
functional language taking inspiration from languages like Haskell and OCaml, one important
feature in this extension of the SMM is the addition of algebraic data types. Since SSLANG is
designed for use on low level hardware like micro controllers and embedded systems, it compiles
to C code for maximum portability and fine-tuned control of hardware timers. Given an algebraic
data type defined in SSLANG, what C code will be generated by the compiler? How will
pattern matching and field access be implemented in C? How will these ADTs interface with
SSLANG’s memory management system? The following sections in this report aim to answer
these questions.

1 Motivating Example: MyBool

An example ADT MyBool is defined using a haskell-esque syntax below. Given this ADT definition,
what C code will be generated by the compiler?

data MyBool = MyTrue int | MyFalse int int

let a = MyFalse 42 18

At the simplest level, a sum type like MyBool can be thought of as having a one to one
correspondence with a struct containing a tag field and a union of structs, something like

enum myBoolTag{MyTrue = 0, MyFalse};

struct MyTrue{

int myTrue_0;

};

struct MyFalse{

int myFalse_0;

int myFalse_1;

};

struct MyBool{

char tag; // signifies whether object

// is a MyTrue or a MyFalse

union {

1

struct MyTrue myTrue;

struct MyFalse myFalse;

}payload;

};

A logical next question might be, “where will this object be stored in memory?” The SSM
runtime uses a simulated stack memory, meaning its activation records are stored in a queue
allocated on the heap. From the perspective of a SSLANG programmer then, what does it mean
to write the line let a = MyFalse 42 18 ?

Does this mean a MyBool struct gets allocated within the program’s activation record, on the
simulated “Stack”? Or does this mean MyBool a gets allocated on the heap, with only a pointer to
a stored within the program’s activation record? The cost of dereferencing a pointer is significant.
Perhaps a MyTrue instance should be stored on the stack. But then what about MyFalse? Is a data
constructor with two integer fields small enough to be kept on the stack? How big does an object
need to be before the cost of dereferencing a pointer outweighs the cost of storing the object in the
activation record? Another downside of storing an object on the heap is the need to dereference it
before viewing its tag field – this could lead to situations where the programmer frequently spends
resources dereferencing a pointer to view a tag, only to discard the object because its not the right
instance.

Compounding this issue are recursive data types, for example

data Tree a = TwoChildren Tree Tree | OneChild Bool Tree | Leaf

Here, to handle the cyclic association, the fields of type Tree within the tree data constructor must
be of pointer types when represented as a C struct.

struct Twochildren{

Tree* twochildren_0; // left kid; must by pointer!

Tree* twochildren_1; // right kid; must by pointer!

};

struct Onechild{

Bool onechild_0;

Tree* onechild_1; // only kid; must by pointer!

};

And then about the more general case, when an object contains another object as a field. Should
that field always be a pointer? Consider this example MyCircle ADT:

data MyRadius = int

data MyPoint = Point int int

data MyCircle = Circle Radius MyPoint

Should the equivalent Circle struct contain a pointers to MyRadius and MyPoint structs, or can
these structs be stored directly inside the Circle, since MyRadius, for example, is only an integer
in size?

struct Circle{ //option 1

struct MyRadius* circle_0;

struct MyPoint* circle_1;

};

2

struct Circle{ //option 2

struct MyRadius circle_0;

struct MyPoint circle_1;

};

The root of this stack vs. heap issue comes down to the question of of what it means for an
ADT to be “small’ vs. “big”. We decided to employ a memory model similar to the one used by
Xavier Leroy in his ZINC compiler for ML [2] to answer this question.

In Leroy’s model, any object larger than a single word is considered large, and any object less
than or equal to word in size is considered small. Objects smaller than a word are rounded up to
the size of a word. As a consequence, the smallest chunk of memory that will ever be referenced in
the runtime system memory is a word in size. This means for 32 bit architectures (where a word is
four bytes), the two least significant bits of any pointer will always be zero. Leroy takes advantage
of these unused bits to distinguish pointers from word sized objects: if a word’s least significant bit
is zero, it’s a pointer to a “large” ADT on the heap; if a word’s least significant bit is one, it’s a
“small” ADT allocated directly on the runtime stack.

One disadvantage of this memory model is a loss in integer precision (31 bit integers instead of
32 bit integers). One advantage is a reduction in the number of pointer dereferences needed. For
small objects, the bits for the tag and fields can be “packed” into a single word, resulting in constant
time access to the tag through bitwise operations. Large objects still require a pointer dereference
for access, but an integer or nullary data constructor will never be stored on the heap (excluding
explicit references, of course). This is good. Finally, the attractiveness of such a simplistic memory
model cemented our decision.

2 Interfacing with the Memory Manager

SSLANG employs a reference counting memory manager. This means the memory manager keeps
track of the number of references pointing to each heap allocated object. When a reference to an
object disappears, for example when a pointer to an object goes out of scope, the memory manager
“drops” the object, decrementing its reference count. As soon as an object’s reference count falls
to zero, the memory manager must free up that object, as well as recursively drop any objects the
freed object held references to.

Akin to Leroy’s ZINC system once more, we decided to place a memory management header
at the start of each ADT. (Small ADTs do not need a header since they’re allocated on the stack,
essentially enclosed inside a memory-managed activation record struct) . This header would be
used by the memory manager to store reference count information about the object needed to do
its job. We also needed a way for the memory manager to know which fields inside an object would
need to be recursively dropped upon freeing that object.

At first, we considered rearranging the fields inside the ADTs, so fields that were pointers would
all be grouped together at the top. This is a strategy outlined by Appel and Shao in the design of
their ML compiler [3]. The idea here is the memory manager can start with the first field following
the meta data header, and read linearly downward. At each field, it checks if it’s a pointer, or
integer. If it finds a pointer, the memory manager recursively drops the object pointed to. If it
finds an integer, the MM can stop reading because the rest of the fields are non-pointers. While
this strategy simplifies the memory manager’s job, it increase the complexity of the compiler, which
would have to rearrange the fields at the code generation level, and ensure the correct the mapping
from pre-reordered fields to post-reordered ones. Instead, we decided to include the number of

3

fields inside the object in the meta data header. This way, the MM can read linearly downward
starting with the first field after the header, and will know to stop after it has checked a particular
number of fields. Finally, to keep the structure of large ADTs uniform, we decided to include the
tag field inside the meta data header.

struct ssm_mm {

uint8_t val_count; // number of fields in the ADT’s payload.

uint8_t tag; // instance of the ADT (which data constructor)

uint8_t ref_count; // number of references to this object

};

3 Adding 31 Bit Integer Support

After deciding on our memory model, we needed to change the representation of integers in SS-
LANG from 32 bit values to 31 bit values with the least significant bit set to 1. This change affected
integer literals, all the arithmetic and nearly all the bitwise operations in the language. For exam-
ple, multiplication needed to change from a * b to marshal(unmarshal(a) * unmarshal(b)) ,
where unmarshal converts a 31 bit integer to a 32 bit integer:

unmarshal (A) = (A >> 1)

and marshal converts a 32 bit integer to a 31 bit integer:

marshal (A) = (A << 1) | 0x1

Certain operations, namely subtraction, addition, and bitwise negation can be translated into fewer
assembly instructions than the result of applying the generic marshal and unmarshal functions.
After adding the generic marshal and unmarshal functions to SSLANG’s code generator, I added
optimizations translations for these aforementioned operations. My work on this can be found in
a merged PR here: https://github.com/ssm-lang/sslang/pull/41

Whether these optimizations would have a concrete effect on the performance of a SSLANG
program as a whole is unclear. I performed some small tests comparing the generated assembly for
optimized translations vs. general marshal/unmarshal, and my results were promising, but more
testing is needed. Results of my tests can be found in section A of the appendix.

4 ADT Struct Definitions

Now that we have determined the memory model for ADTs and their interface with the memory
manager, we can adapt our C struct translation of MyBool into a much more general form. Consider
the following true statements and their corresponding C definitions.

”Every ADT in SSLANG is a word, and every word is either a pointer or an integer”

typedef union {

struct ssm_mm *heap_ptr;

ssm_word_t packed_val;

} ssm_value_t;

“’Big’ ADTs are pointers to objects allocated on the heap. A ‘big’ ADT object contains a meta
data header followed by some number of fields”

4

struct ssm_object {

struct ssm_mm mm;

ssm_value_t payload[1];

};

By making the payload an array of 0 values, we can use the same struct definition to represent any
big ADT; we rely on the size in the metadata field and unsafe casting to access fields. Using these
new generic definitions for any ADT we translate

data MyBool = MyTrue int | MyFalse int int

let a = MyFalse 42 18

into

enum MyBool{MyTrue = 0, MyFalse};

void main() {

struct ssm_object* tmp = ssm_new(/* max size */ 2, /* tag */ MyFalse);

tmp->payload[0] = (ssm_value_t) { .packed_val = ((42) << 1 | 1) };

tmp->payload[1] = (ssm_value_t) { .packed_val = ((18) << 1 | 1) };

ssm_value_t a = (ssm_value_t) { .heap_ptr = &(tmp)->mm };

}

ssm_new invokes the memory manager, which allocates space for the meta data header and ADT’s
fields and then correctly initializes the header.

Now that we know the C code we want to generate, how do we go about generating it? Given
an ADT defintion consisting of a Type Constructor and Data constructor(s), C struct generation
can be broken down into a few steps:

1. Determine whether each instance of an object is “small” or “big”; round up the size of “small”
ADTs to a single word.

2. Generate a C enum for the ADT’s tags, with “small” data constructors getting the smaller
tag values (list the names of the “small” data constructors in the enum first before listing the
names of the “big” data constructors.)

3. Save information about the ADT in a lookup table for later use in codegen.hs

where

• the size of a Data Constructor is the sum of its fields

• each field in an ADT is a word in size

• “small” is <= one word, “big” is > one word

• the lookup table of information is defined as

data TypeDefInfo = TypeDefInfo

{ dconType :: M.Map DConId TConId

, typeSize :: M.Map TConId Int

, isPointer :: M.Map DConId Bool

, tag :: M.Map TConId (C.Exp -> C.Exp)

, intInit :: M.Map DConId C.Exp

, ptrFields :: M.Map DConId (C.Exp -> Int -> C.Exp)

}

5

The final three fields in the look up table store snippets of generated C code unique to each ADT for
extracting its tag and initializing its fields. Since an integer is the smallest built-in type SSLANG
currently supports, the lookup table assumes small ADTs only contain nullary data constructors.

An edge case exists where a Data Constructor deemed ”small” can sometimes end up larger
than a word after incorporating its tag bits. To resolve this issue, as extra check between steps 1
and 2 is performed to calculate tag bits and ensure all the instances deemed ”small” will indeed fit
in a word. An illustration of this edge case is in section B of the Appendix.

5 ADT Initialization, Field Access and Pattern Matching

After defining and filling a lookup table with meaningful information in TypeDef.hs, I augmented
the the underlying program state monad GenFnState in Codegen.hs to contain an instance of
this table. One look up table is generated per call to genTypeDef, so genProgram combines the
tables generated from all the ADT definitions/calls to genTypeDef into a single table stored in
GenFnState. Later, when ADT initialization occurs in genExpr, generating the correct C code
becomes a simple series of table look ups.

Pattern matching ADTs is equivalent to writing a C switch statement that switches on the tag
field of an object. There are three variations of the extract function:

1. When an ADT only contains ”small” instances, the extract tag function looks like

extractTag(A) = ((A._packed_int >> 0x1) & tagBits)

2. When an ADT only contains ”big” instances, the extract tag function looks like

intTagVal(A) = (A.heap_ptr->mm.tag)

3. When an ADT contains both ”small” and ”big” instances, the extract tag function looks like

tagVal(A) = ((A & 0x1) ? intTagVal : ptrTagVal)

Categorizing ADTs in this way allows us to omit the ”isInt” (A 0x1) check when unnecessary.
My work on ADT intitialization, field access and pattern matching can be found in my changes to
Codegen.hs and TypeDef.hs in an open PR here: https://github.com/ssm-lang/sslang/pull/50

6 Conclusion/Next Steps

At the time of writing this report, the IR representation of ADTs exists in the main branch, but
not the syntax or parsing at the front end of the compiler. This means all of my changes to the
code generation files (with the exception of 31 bit integer support) have not been tested. An urgent
next step is to test my code on the MyBool example to make sure the correct C code is generated.
This can be achieved by manually writing the MyBool example in IR and then running it through
the rest of the compiler, or completing the front end portion the compiler for ADTs.

Adopting the ”everything is a word” memory model required a substantial reorganization and
rewriting of the SSLANG runtime system, implemented in Hui’s PR ”Support word-size values and
memory management”. In addition to testing, the adt-init-c-struct-gen branch will need to pull
these PR changes and resolve any merge conflicts before approval.

6

References

1. Stephen A. Edwards and John Hui. The Sparse Synchronous Model. In Forum on Specifi-
cation and Design Languages (FDL), Kiel, Germany, September 2020.

2. Leroy, X. The Zinc Experiment: An Economical Implementation of the ML Language.
INRIA, 1990.

3. Appel, Andrew W, and Zhong Shao. “A Type-Based Compiler for Standard ML.” ACM
SIGPLAN Notices, vol. 30, no. 6, June 1995, pp. 116–129.

Appendix

A 31 Bit Integer Marshal/Unmarshal Optimizations

I wrote two and three way addition functions, using both regular marshal/unmarshal operations,
and an optimized marshal/unmarshal for addition.

Figure 1: Two Way Addition in C

Figure 2: Three Way Addition in C

I compared these versions by compiling the corresponding C code to assembly on godbolt.org
and counting the number of instructions. I ran these comparisons with settings for a 32 bit and
64 bit ARM processor as well as a 64 bit x86 processor, with both CLANG and gcc compilers. I
found that compiling with gcc on the optimized marshal/unmarshal consistently saved two assembly
instructions.

7

Figure 3: 32 Bit Results

Figure 4: 64 Bit Results

B Edge Case: Many Nullary Data Constructors

data Color = RGB Char Char Char

| CMYK Char Char Char Char

| Red | Orange | Yellow | Green | Blue | Indigo | Violet

| Black | White | Gray | Gold | Silver | Bronze | Rainbow

8

let paint = RGB 52 158 235

All ADTs are represented with a single word.

1. Questions:

- Which must be a pointer to an object on the heap?

- Which can be a 31 bit integer instead?

2. Find candidate Data Constructors that contain few enough fields to fit in a single word

__

| Data Constructor | sizeOf (bits) | decision |

|-------------------|---------------|--------------------|

| RGB | 24 | CANDIDATE INTEGER |

|-------------------|---------------|--------------------|

| CMYK | 32 | Pointer to Heap |

|-------------------|---------------|--------------------|

| Red | 0 | CANDIDATE INTEGER |

|-------------------|---------------|--------------------|

| Orange | 0 | CANDIDATE INTEGER |

|-------------------|---------------|--------------------|

| Yellow | 0 | CANDIDATE INTEGER |

|-------------------|---------------|--------------------|

| Green | 0 | CANDIDATE INTEGER |

|-------------------|---------------|--------------------|

| Blue | 0 | CANDIDATE INTEGER |

|-------------------|---------------|--------------------|

| Indigo | 0 | CANDIDATE INTEGER |

|-------------------|---------------|--------------------|

| Violet | 0 | CANDIDATE INTEGER |

|-------------------|---------------|--------------------|

| Black | 0 | CANDIDATE INTEGER |

|-------------------|---------------|--------------------|

| White | 0 | CANDIDATE INTEGER |

|-------------------|---------------|--------------------|

| Gray | 0 | CANDIDATE INTEGER |

|-------------------|---------------|--------------------|

| Gold | 0 | CANDIDATE INTEGER |

|-------------------|---------------|--------------------|

| Silver | 0 | CANDIDATE INTEGER |

|-------------------|---------------|--------------------|

| Bronze | 0 | CANDIDATE INTEGER |

|-------------------|---------------|--------------------|

| Rainbow | 0 | CANDIDATE INTEGER |

|___________________|_______________|____________________|

3. Determine which candidates still fit into a single word when taking into account tag bits

There are 15 candidate data constructors, which means 8 bits will be needed for the tag.

__

9

| Data Constructor | sizeOf + tag | decision |

|-------------------|---------------|--------------------|

| RGB | 24 + 8 = 32 | Pointer to Heap |

|-------------------|---------------|--------------------|

| Red | 0 + 8 = 8 | INTEGER |

|-------------------|---------------|--------------------|

| Orange | 0 + 8 = 8 | INTEGER |

|-------------------|---------------|--------------------|

| Yellow | 0 + 8 = 8 | INTEGER |

|-------------------|---------------|--------------------|

| Green | 0 + 8 = 8 | INTEGER |

|-------------------|---------------|--------------------|

| Blue | 0 + 8 = 8 | INTEGER |

|-------------------|---------------|--------------------|

| Indigo | 0 + 8 = 8 | INTEGER |

|-------------------|---------------|--------------------|

| Violet | 0 + 8 = 8 | INTEGER |

|-------------------|---------------|--------------------|

| Black | 0 + 8 = 8 | INTEGER |

|-------------------|---------------|--------------------|

| White | 0 + 8 = 8 | INTEGER |

|-------------------|---------------|--------------------|

| Gray | 0 + 8 = 8 | INTEGER |

|-------------------|---------------|--------------------|

| Gold | 0 + 8 = 8 | INTEGER |

|-------------------|---------------|--------------------|

| Silver | 0 + 8 = 8 | INTEGER |

|-------------------|---------------|--------------------|

| Bronze | 0 + 8 = 8 | INTEGER |

|-------------------|---------------|--------------------|

| Rainbow | 0 + 8 = 8 | INTEGER |

|___________________|_______________|____________________|

4. Answers:

- RGB and CMYK must be pointers to objects on the heap

- all the rest are 31 bit integers

5. Generate Tag Enum with 31 bit integers getting the lowest tag values

enum colorTag { Red, Orange, Yellow, Green, Blue, Indigo, Violet, Black,

White, Gray, Gold, Silver, Bronze, Rainbow, RGB, CMYK };

6. Generate struct initialization with payload containing max number of fields

The max number of fields a Color Data Constructor can have is 4 (CMYK).

void main() {

struct ssm_object* tmp = ssm_new(/* max size */ 4, /* tag */ RGB);

tmp->payload[0] = (ssm_value_t) { .packed_val = ((52) << 1 | 1) };

tmp->payload[1] = (ssm_value_t) { .packed_val = ((158) << 1 | 1) };

10

tmp->payload[1] = (ssm_value_t) { .packed_val = ((235) << 1 | 1) };

ssm_value_t paint = (ssm_value_t) { .heap_ptr = &(tmp)->mm };

}

11

	Motivating Example: MyBool
	Interfacing with the Memory Manager
	Adding 31 Bit Integer Support
	ADT Struct Definitions
	ADT Initialization, Field Access and Pattern Matching
	Conclusion/Next Steps
	31 Bit Integer Marshal/Unmarshal Optimizations
	Edge Case: Many Nullary Data Constructors

