
Design and Implementation of Simple Inliner in SSLANG
Eric Feng, Emily Sillars

Columbia University
{ef2648,ems2331}@columbia.edu

ABSTRACT
Inlining describes the process of replacing an ocurrence of a name
with its associated value. It is a key optimization that reveals further
optimizing transformations during compilation for producing an
efficient executable. Simon Peyton Jones and Simon Marlow’s sem-
inal work in Secrets of the Glasgow Haskell Compiler Inliner detail
key insights and algorithms in developing a production inliner for
GHC [3]. In this report, we describe our work in understanding,
designing, and implementing a similar but more simplified version
of their inliner for SSLANG. In particular, our inliner currently
supports two of the three inlining phases detailed in the paper:
PreInlineUnconditionally and PostInlineUnconditionally. We detail
lessons learned and the future work necessary in producing a more
capable and intelligent inliner.

1 REFERENCE INLINER
We model the design of our inliner based on the inlining phase of
the simplifier in GHC. In this section, we describe key takeaways
from Secrets of the Glasgow Haskell Compiler Inliner to give the
background of our design and implementation.

1.1 Overview
Consider a definition x = E; inlining is the process of substituting
the occurrence of xwith E. Jones and Marlow identify three distinct
transformations which they describe as inlining [3]:

Inlining itself replaces an occurrence of a let-bound
variable by (a copy of) the right-hand side of its defi-
nition
Dead code elimination discards bindings that are no
longer used; this usually occurs when all occurrences
of a variable have been inlined.
𝛽 − 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 rewrites a lambda application
(\x->E) A as let {x = A} in E

In GHC, inlining belongs to a larger transformation process
known as the simplifier. This is because inlining often reveals op-
portunities for further code transformations that the remaining
optimizers in the simplifier carry out [2]. Simplification alternates
between a two-step process involving an occurence analyzer and
the actual simplifier until either no transformations occur or the
number of iterations exceeds 4. The overarching architecture of the
GHC simplifier thus looks as follows [3]:
while something-happened && iterations < 4
do

perform occurrence analysis
simplify the result

end

E6901: Projects In Computer Science, ,
2022.

1.2 Occurrence Analyzer
The occurrence analyzer is run before the simplifier and is a bottom-
up pass of the program that annotates each binder with an indi-
cation of how it occurs. It informs the simplifier on how to ap-
proach the inlining decision of a variable. For a let expression like
let x = E in B, we analyze how often x occurs in B and the con-
text of its occurrence. Based on this information, we place the binder
in one of the following categories:

• LoopBreaker: The binder is part of a group of mutually
recursive definitions. We’ve decided never to inline this par-
tiuclar member in order to prevent non-termination of the
simplifier. A more elegant solution involving solving for
strongly connected components and breaking links as de-
tailed by Jones and Marlow remain future work [3].

• Dead: The binder is not used. In this case, we may discard
the binder entirely and eliminate the dead code.

• OnceSafe: The binder occurs once and is not inside a lambda.
It is safe for us to inline unconditionally.

• MultiSafe: The binder occurs at most once in distinct case
branches, none of which are inside lambda expressions. It is
safe for us to inline unconditionally.

• OnceUnsafe: The binder occurs once but is inside a lambda.
Inlining will not duplicate code but may duplicate work

• MultiUnSafe: The binder may occur many times, including
inside lambdas.

When we say that a binder is safe to be inlined, we mean that
we can be assured of no code duplication or work duplication. To
see why a binder that is marked OnceUnsafe (that is, a binder
that occurs once but is inside a lambda) may give rise to work
duplication, consider the following example [3]:
let x = foo 100

f = \y -> x * y
in ...(f 3 ) .. (f 4) ...

Where foo is a computationally expensive function. If we inline
foo 100 in f, foo 100 will be called every time f is. In this case,
we would rather just calculate foo 100 once rather than inline it
and have it called each time f is.

1.3 Simplifier and the Three-Phase Inlining
Strategy

At its core, the simplifier takes in a “substitution”, a set of in-scope
variables, an “in-expression”, and a “context,” and returns an “out-
expression”.
simplExpr :: Subst -> InScopeSet -> InExpr -> Context

-> OutExpr↩→

Where InExpr and OutExpr signify the in-expression and out-
expression respectively. An in-expression is simply an expression
that has not yet been processed by the simplifier (in other words,



E6901: Projects In Computer Science, , Eric Feng, Emily Sillars

has not yet undergone consideration for being inlined). An out
expression is an expression that has already been processed.

Before we dive into greater detail on the specifics of each argu-
ment, let us develop some intuition for the overall inlining strategy
described in the paper. When the simplifier meets an in-expression,
it decides whether to inline x in B at three distinct phases. Consider
again the expression:
let x = E in B

• PreInlineUnconditionally: If x is marked OnceSafe dur-
ing occurrence analysis, then it will inline x unconditionally
in B. In this case, the simplifier does not attempt to simplify
the binder’s right-hand side, E, at the site of the definition.
The substitution is extended by binding the following sub-
stitution: x -> E and we discard the binding x completely.
We then simplify B using the extended substitution.

• PostInlineUnconditionally: If
PreInlineUnconditionally failed on x, the simpli-
fier tries to first simplify its right-hand side E to produce E'.
Then, it will decide again whether to inline x unconditionally
in B. It does so if:
– x is not exported,
– x is not a loop breaker, and
– E' is just a literal, variable or trivial constructor applica-
tion (all of which guarantee that work nor code will be
duplicated).

If x and E' pass the described criteria, then the substitution
is extended with x -> E' and we again discard the binding
x before simplifying B using the extended substitution.

• CallSiteInline: If the above two phases failed, the simpli-
fier adds x to the in-scope and then proceeds to process B. (In
this case, the substitution is not extended). Later, when the
simplifier encounters an occurrence of x, it decides whether
to inline x based on information stored in the in-scope set
and a set of complex heuristics.

While it may seem that PreInlineUnconditionally and
PostInlineUnconditionally could be combined into a single
phase, they cannot due two issues: reliance on state and exponential
blowup. It can be helpful to think of PreInlineUnconditionally
as a substitution set writer, and PostInlineUnconditionally as
a substitution set reader-writer. PreInlineUnconditionally does
not need to read from the substitution set; it relies purely on static
occurrence information to decide whether to write to the sub-
stituion set, never needing to even peek at the right hand side
(RHS) of a let binding. PostInlineUnconditionally, on the other
hand, needs more information to decide whether to write. The
occurrence info of the binder is not enough, so it must simplify
the RHS of a let-binding before making its decision. Simplifying
requires actually inlining occurrences of variables, which means
PostInlineUnconditionally relies on reading the substitution
set accumulated from past recursive steps. It runs after inlining
inside the RHS takes place, hence the name post inline. If we try to
combine these two distinct phases, we either must always process
the right hand side (RHS) of a let binding which leads to exponential
blow up (we process the RHS once at the let binding and then again
at each occurrence site), or never process the RHS, which leads to
incorrect inlining (serious problems arise when we use E instead

of E' to make decisions). For these reasons, the two phases must
remain distinct.

1.3.1 Substitution. The substitution that the aforementioned
SimplExpr takes as an argument informs us of how we can sub-
stitute a binder with its expression, thereby instantiating inlining
behavior.

type Subst = Map InVar SubstRng
data SubstRng = DoneEx OutExpr

| SuspEx InExpr Subst

A substitution is a map whose domain consists of in-
variables and whose range is either a (DoneEx OutExpr)
or (SuspEx InExpr Subst). A SuspEx is used by
PreInlineUnconditionally. This is because, for
PreInlineUnconditionally, we do not examine the binder’s
right-hand side at all. Therefore, E remains unsimplified and
an in-expression. The in-expression is paired with the existing
substitution. We keep the substitution here because because it now
holds the unprocessed right hand side of our binder x. As we will
see, when we meet the occurrence of x in B, we use the substitution
map to retrieve E for inlining. Once we replace x with E, we will
at that point finally process the in-expression E. On the other
hand, a DoneEx is used by PostInlineUnconditionally — recall
in our previous section that in PostInlineUnconditionally,
the expression on the binder x’s right-hand side is simplified to
produce E'. Thus, E' is effectively a (simplified) out-expression. For
this reason, we do not need to pair it with the existing substitution
as with SuspEx.

1.3.2 In-Scope Set. When a binder is absent from the current
substitution set, the simplifier uses information from the in-scope
set to help it decide whether to inline it. The in-scope set holds
information about the binder’s associated value (or "RHS" in the
case of let-bindings).

type InScopeSet = Map OutVar Definition
data Definition = Unkown

| BoundTo OutExpr OccInfo
| NotAmong [DataCon]

Unkown means the binder is bound inside a lambda or appears
in a case pattern. BoundTo means the binder comes from a let-
expression; it holds a copy of the binder’s RHS as an OutVar as
well as its occurrence information. NotAmong records negative in-
formation about a binder’s value within local settings for case arm
elimination. For example,

case x of
Red ->
Blue ->
Green ->
DEFAULT -> ... case x of

Blue -> ...
Pink -> ...
DEFAULT -> ...

Inside the second case expression, x can be stored inside the in-
scope set as NotAmong [Red, Blue, Green] which allows us to
eliminate the Blue arm in the second case expression.



Design and Implementation of Simple Inliner in SSLANG E6901: Projects In Computer Science, ,

1.4 Example
Let’s run the simplifier on an example SSLANG program.
main cin cout =

let r = 25
let q = r + 25
r + q

First the occurrence analyzer runs, which finds r to be MultiUnsafe
(since it appears more than once), and q to be OnceSafe (since it
appears once, not inside a lambda).

PreInlineUnconditionally fails for r, but
PostInlineUnconditionally passes, so r gets added to the
substitution set. PreInlineUnconditionally passes for q, so it’s
added to the substitution set.

When the simplifier encounters the expression r+q, it recurses
on the arguments to the addition operator, looking up r and q in
the substitution set and inlining accordingly. The final output:
main cin cout =

25 + (25 + 25)

For a more detailed step-by-step walkthrough of the simplifier, see
the appendix.

1.5 Name Capture
"It is well known that any transformation-based compiler must be
concerned about name capture" [3]. In the case of inliner transfor-
mations, name capture refers to the problem of correctly inlining
with shadowed variables. Specifically, the rule is within lambda
abstraction _x.M, one can only replace y with E provided that x is
not free inside E. Otherwise, any x inside of _x.M must be renamed
before inlining of y can occur. Consider the following example:
let y = a+b in

let a = 7 in
y+a

Here, the a in the first let is shadowed by the redefinition of a in
the second let. We can rewrite this example using 𝛽-expansion:
(\y -> (\a -> y+a) 7)) (a+b)

We cannot replace y with a+b inside _a.y+a because a is free inside
a+b. (Free refers to when a variable is not associated with a lambda
[1], and a+b does not contain any lambda expression at all.)

The solution then is to rename all instances of a inside _a.y+a:
(\y -> (\s796 -> s796+a) 7)) (a+b)

which using 𝛽-reduction becomes:
let y = a+b in

let s796 = 7 in
y+s796

which performing inlining itself followed by dead code elimination
yields:
let s796 = 7 in
(a+b) + s796

Jones and Marlow outline a fairly complex strategy for eliminating
shadowed variables dubbed the "rapier". Since eliminating shad-
owed variables will be handled by a separate compiler pass, we will
not cover the details here. Instead, we will assume moving forward
that all names encountered by our simplifier are unique.

2 DESIGN AND IMPLEMENTATION
2.1 Overview
We added the inlining process simplifyProgram as a compiler pass
transformation in IR.hs. Just like the design of the simplifier as
shown in Secrets of the Glasgow Haskell Compiler Inliner, our inliner
is split into two parts: the occurrence analyzer and the inliner
itself. However, our inliner currently only supports the first two
inlining conditions — namely PreInlineUnconditionally and
PostInlineUnconditionally. At the moment, CallSiteInline
and the heuristics involved in conditional inlining remain future
work. Moreover, the simplifier currently only runs once (in the
GHC, it is run multiple times until there are no more changes or
the number of runs exceeds 4 as shown in section 1). We intend to
add support for running multiple occurrences of the inliner in the
future.

2.2 Occurrence Analyzer
The occurrence analyzer is the first procedure we run in
SimplifyProgram. The categories we use to annotate binders are
the same as those described in the paper. The actual GHC annotates
binders in a similar, but more sophisticated fashion. They take into
consideration of mutually recursive definitions which we do not
currently support. Moreover, we do not currently support inlining
match statements. We hold the occurrence information as a global
map with keys varId and values OccInfo.

data OccInfo = Dead
| LoopBreaker
| OnceSafe
| MultiSafe
| OnceUnsafe
| MultiUnsafe
| Never

In addition to what was described by Jones and Marlow, we
have a temporary category Never. Since we are only support-
ing PreInlineUnconditionally and PostInlineConditionally
currently, we mark binders that do not fall into either under a catch-
all to denote those binders which would typically be considered
under CallSiteInline but for the moment we will not consider
for inlining.

The default value of a binder being added to the occurence an-
alyzer is Dead. If we meet the binder again, and the binder is not
within a lambda or a branch of a match statement, it is annotated
OnceSafe. Otherwise, we annotate the binder as Never.

We begin the occurrence analyzer by running swallowArgs on
the program definitions. It leverages unfoldLambda to unroll top-
level functions’ curried lambdas. The semantics of the program is
preserved when we do this since a top-level function with 𝑥 − 1
arguments that returns a lambda has the same type as that of a
top-level function with 𝑥 arguments that returns a non-lambda a
expression. The occurrence information of the top-level function
name and arguments are then added to the map. Next, we turn our
attention to the body of the top-level function and annotate the
binders in a top-down fashion. Since we unroll the initial lambdas,
the root of the tree becomes the first non-lambda expression we



E6901: Projects In Computer Science, , Eric Feng, Emily Sillars

meet. The implementation details depending on the specific IR node
are as follows:

• Let: We map over the binders and their respective right-
hand sides. The occurrence information of both is captured.
We then recurse on the body of the let expression.

• Variables: The occurrence information of the variable is
updated.

• Lambdas: First, we record that we are entering a layer of
lambda. This information is necessary because the heuristics
involved in terms of inlining expressions that are not literals
or variables within lambdas are complicated and are han-
dled by CallSiteInline[3]. Even though we do not handle
CallSiteInline at the moment, we use this information to
let our inliner know to not try and inline non-literal/variable
expressions belonging in lambdas. If the lambda has a named
binder, we also add its occurrence information. We then re-
curse on the body of the lambda before recording that we
are exiting a layer of lambda.

• Application: We recurse on both the left-hand side and the
right-hand side.

• Match: We record that we are entering a match expression
in the same way as lambdas. The occurrence information of
the scrutinee is added. We then recurse on the arms of the
match expression.

• Primitives: The occurrence information of each argument
to the primitive operation is recursively added.

• All other IR nodes: The expression is returned with no infor-
mation added to the map.

2.3 Inliner
After running the occurrence analyzer, we feed its results into the
inliner via calls to the simplExpr function. Our type signature
mirrors the 1990 GHC’s simplExpr function, except that the in-
scope set and context are placeholder string types for the time
being.
simplExpr :: Subst -> InScopeSet -> InExpr -> Context

-> SimplFn OutExpr↩→

As we were coding the inlining portion, we realized that emulat-
ing the layered substitution map described in the paper only intro-
duced needless complexity. Since another compiler pass would en-
sure the simplifyProgram pass would only ever encounter unique
binders (no shadowing), we had no need for a layered substitu-
tion map! We switched to using a flat substitution map, calling it
subst and storing it as a field in our simplifier environment state
monad; we plan to remove the unused Subst argument passed
around in future work, as well as change the type of subst from
M.Map InVar SubstRng to M.Map InVar (I.Expr I.Type).

Given a top level definition, we simplify each expression using
simplExpr in a top down fashion. Like the occurrence analyzer,
the implementation details vary depending on the IR node.

The most interesting case of simplExpr naturally occurs when
we meet let expression nodes. In this case, we map over all binders
and their respective right hand sides looking for the binders’ occur-
rence information in the global map that the occurrence analyzer
filled. If the key does not exist (wild cards), then we recursively sim-
plify its right hand side and return the wildcard with its simplified

right hand side. If the variable is annotated as Dead, we remove the
binding altogether (dead code elimination). If the binder is anno-
tated as OnceSafe, then we perform PreInlineUnconditionally.
We insert the binder with SuspEx rhs to the substitution map
and remove the binder at the site of declaration. If the binder
is in the global map but is not Dead or OnceSafe, we attempt
PostInlineUnconditionally. In this case, we recursively sim-
plify the expression of the binders’ right hand side. If the simplified
right hand side is a literal or variable, we insert the pair into the
substitution and remove the binding. If it is neither, then we would
default to the criteria fit for CallSiteInline. Since we do not cur-
rently handle this situation, we just return the binder and its right
hand side, unmodified.

Eventually, recursive calls to simplExpr will reach lone variable
nodes. This means that we have arrived at the occurrence site of
a binder. On matching with a variable node, we perform a look
up of the variable in the substitution map. If the variable exists
in the map as SuspEx, we know the value associated with this
variable in the map is unprocessed. Therefore we recurse on the
value held by SuspEx, and then inline it. If the variable exists in
the map as DoneEx, we know the variable’s associated value has
already been processed and we inline it right away. If the variable
does not exist in the substitution map, it belongs in the category of
CallSiteInline and we return the variable unchanged since we
do not support it yet.

For all other forms of IR nodes, we recursively simplify the given
expression. At the lowest level, in the catch all case (e.g literals),
we return the expression unchanged.

3 FUTUREWORK
Our draft PR contains four working inlining examples in the
regression-tests/tests folder. These test cases cover some simple
OnceSafe and MultiUnsafe examples. A number of features re-
main to be added, namely:

• More extensive test cases on current functionality, especially
tests covering lambda expressions for OnceUnsafe cases

• A final edge case for PostInlineUnconditionally, which
addresses "trivial" constructor applications (referred to as
the trivial-constructor-argument-invariant in the paper)

• Handling mutually recursive definitions and recursive data
types (the LoopBreaker category)

• Extending the Occurrence Analyzer to identify categories
other than OnceUnsafe

• Extending the Simplifier to handle CallSiteInline
• another thing

Jones and Marlow spend a substantial amount of time describing
their algorthim for identifying LoopBreakers; this makes us opti-
mistic that handling recursive data types and mutually recursive
lets will be a trivial (if tedious) extension to the ocurrence analyzer.
We expect implementing CallSiteInline to take up the bulk of
the remaining work.

4 CONCLUSION
We present a simple inliner for SSLANG based on the Three
Phase Inliner in Secrets of the Glasgow Haskell Compiler In-
liner. Of the three phases, our inliner currently only supports

https://github.com/ssm-lang/sslang/pull/132


Design and Implementation of Simple Inliner in SSLANG E6901: Projects In Computer Science, ,

PreInlineUnconditionally and PostInlineUnconditionally.
As the naming implies, these phases involve evaluating binders
which are always worth inlining. In other words, inlining expres-
sions where we are guaranteed no duplicate code or duplicate work
will be done. The more complex CallSiteInline phase, which
involves evaluating whether it is worth it to inline a particular
expression based on its surrounding “context,” remain future work.
We intend to work on CallSiteInline next semester.

REFERENCES
[1] Susan B. Horwitz. 2022. Lambda Calculus (Part I). https://pages.cs.wisc.edu/

~horwitz/CS704-NOTES/1.LAMBDA-CALCULUS.html
[2] Alexis King. 2022. Tweag: GHC Simplifier basics. https://www.youtube.com/

watch?v=m_HX4hyOuog
[3] Simon Peyton Jones and Simon Marlow. 2002. Secrets of the Glasgow Haskell

Compiler Inliner. J. Funct. Program. 12 (07 2002), 393–433. https://doi.org/10.1017/
S0956796802004331

APPENDIX
(Continued on the next page in single column format)

https://pages.cs.wisc.edu/~horwitz/CS704-NOTES/1.LAMBDA-CALCULUS.html
https://pages.cs.wisc.edu/~horwitz/CS704-NOTES/1.LAMBDA-CALCULUS.html
https://www.youtube.com/watch?v=m_HX4hyOuog
https://www.youtube.com/watch?v=m_HX4hyOuog
https://doi.org/10.1017/S0956796802004331
https://doi.org/10.1017/S0956796802004331


E6901: Projects In Computer Science, , Eric Feng, Emily Sillars

Inlining Example Step by Step
main cin cout =

let r = 25
let q = r + 25
r + q

(0) Occurrence Analyser runs, and determines
r is MultiUnsafe (because it occurs more than once)
q is OnceSafe

(1) Simplify (let r = 25 in ...)
simpleExpr {} {} (let r = 25 in ...) “context”
simpleExpr :: Subst -> InScopeSet -> InExpr -> Context -> OutExpr
Subst: {}
InScopeSet: {}
InExpr: (let r = 25 in ...)
Context: “context”

The InExpr is a Let IR node, so let’s look up the binder’s occurrence information. . .
r is marked MultiUnsafe, so it FAILS preInlineUnconditionally.
What about postInlineUnconditionally? Let’s evaluate the RHS of binder r. . .
E’ <- simplExpr 25
Since 25 is just a literal, simplExpr will just return the value.
Then E’ is just 25, a literal, so r PASSES postInlineUnconditionally.
Let’s add r to our substitution set with value (DoneEx 25 {}), and remove the binder r.
Now that we have dealt with the binders, we recurse on the body of the let IR node!

(2) Simplify (let q = r + 25 in ...)
simpleExpr {(“r”, DoneEx 25 {})} {} (let q = r + 25 in ...) “context”
simpleExpr :: Subst -> InScopeSet -> InExpr -> Context -> OutExpr
Subst: {(“r”, DoneEx 25 {})}
InScopeSet: {}
InExpr: (let q = r + 25 in ...)
Context: “context”

The InExpr is a Let IR node, so let’s look up the binder’s occurrence information. . .
q is marked OnceSafe, so it PASSES preInlineUnconditionally.
Let’s add q to our substitution set with value (SuspEx (r + 25) {}), and remove the binder q.
Now that we have dealt with the binders, we recurse on the body of the let IR node!

(3) Simplify r + q
simpleExpr {(“q”, SuspEx (r + 25) {}), (“r”, DoneEx 25 {})} {} (r + q) “context”
simpleExpr :: Subst -> InScopeSet -> InExpr -> Context -> OutExpr
Subst: {(“q”, SuspEx (r + 25) {}), (“r”, DoneEx 25 {})}
InScopeSet: {}
InExpr: (r + q)
Context: “context”

The InExpr is a Prim IR node. Since the Prim IR node in the SSLANG compiler contains a list of arguments,
let’s map simpleExpr over each argument, then return a Prim IR node with processed arguments.
arg0 <- simplExpr {(“q”, SuspEx (r + 25) {}), (“r”, DoneEx 25 {})} {} r “context”
arg1 <- simplExpr {(“q”, SuspEx (r + 25) {}), (“r”, DoneEx 25 {})} {} q “context”



Design and Implementation of Simple Inliner in SSLANG E6901: Projects In Computer Science, ,

Based on recursive call 3.1, we know arg0 is 25
Based on recursive call 3.2, we know arg1 is (25 + 25)

So we return Prim [25, (25 + 25)]

(3.1) Simplify r
simpleExpr {(“q”, SuspEx (r + 25) {}), (“r”, DoneEx 25 {})} {} r “context”
simpleExpr :: Subst -> InScopeSet -> InExpr -> Context -> OutExpr
Subst: {(“q”, SuspEx (r + 25) {}), (“r”, DoneEx 25 {})}
InScopeSet: {}
InExpr: r
Context: “context”

The InExpr is a Var IR node, so let’s look up the VarId in the substitution set:
sub <- Lookup “r” {(“q”, SuspEx (r + 25) {}), (“r”, DoneEx 25 {})}
Based on our substitution set, sub is DoneEx 25 {}.
DoneEx means the expression 25 has already been processed, so let’s return literal 25.

(3.2) Simplify q
simpleExpr {(“q”, SuspEx (r + 25) {}), (“r”, DoneEx 25 {})} {} r “context”
simpleExpr :: Subst -> InScopeSet -> InExpr -> Context -> OutExpr
Subst: {(“q”, SuspEx (r + 25) {}), (“r”, DoneEx 25 {})}
InScopeSet: {}
InExpr: q
Context: “context”

The InExpr is a Var IR node, so let’s look up the VarId in the substitution set:
sub <- Lookup “q” {(“q”, SuspEx (r + 25) {}), (“r”, DoneEx 25 {})}
Based on our substitution set, sub is SuspEx (r + 25) {}.
SuspEx means the expression (r + 25) has not yet been processed, so let’s recurse on it.

(3.3) Simplify r + 25
simpleExpr {(“q”, SuspEx (r + 25) {}), (“r”, DoneEx 25 {})} {} (r + 25) “context”
simpleExpr :: Subst -> InScopeSet -> InExpr -> Context -> OutExpr
Subst: {(“q”, SuspEx (r + 25) {}), (“r”, DoneEx 25 {})}
InScopeSet: {}
InExpr: (r + 25)
Context: “context”

The InExpr is a Prim IR node. Since the Prim IR node in the SSLANG compiler contains a list of arguments,
let’s map simpleExpr over each argument, then return a Prim IR node with processed arguments.
arg0 <- simplExpr {(“q”, SuspEx (r + 25) {}), (“r”, DoneEx 25 {})} {} r “context”
arg1 <- simplExpr {(“q”, SuspEx (r + 25) {}), (“r”, DoneEx 25 {})} {} 25 “context”

Based on recursive call 3.4 (which is identical to 3.1), we know arg0 is 25
Since 25 is just a literal, simplExpr will just return the value (arg1 will get literal 25).

So we return Prim [25, 25]

Result after inlining:

main cin cout =
25 + (25 + 25)


	Abstract
	1 Reference Inliner
	1.1 Overview
	1.2 Occurrence Analyzer
	1.3 Simplifier and the Three-Phase Inlining Strategy
	1.4 Example
	1.5 Name Capture

	2 Design and Implementation
	2.1 Overview
	2.2 Occurrence Analyzer
	2.3 Inliner

	3 Future Work
	4 Conclusion
	References

