
COMS 6901 E

SSLANG Algebraic Data Types and Beyond

Emily Sillars

5/12/22

Abstract

My prior report concluded with C code designs for algebraic data types and the memory
manager fully solidified, and news of an updated runtime system merged into the main codebase.
Now that a C code representation of ADTs has been established, what further steps must we
take before we can translate a simple SSLANG source program with ADTs into an executable?
After building this foundation, how can we extend ADT functionality? Where do we go from
here? This research report is split into two main sections, firstly, full integration of ADTs into
and further work on the compiler pipeline, and secondly, example SSLANG programs and a
look into the future.

1 Integrating ADTs + Pretty Printing

1.1 Updating Codegen.hs

The updated runtime system included a number of helpful C macros and functions in ssm.h for
common ADT related tasks, like allocating space for ADTs and accessing their fields. In addition,
the new LibSSM.hs file defined useful, reusable haskell functions for generating the c quasiquotation
expressions for calling these macros. Together, ssm.h and LibSSM.hs provided another layer of
abstraction between codegen.hs and calls to the language-c-quote library.

A helpful function and macro from ssm.h:

/** Allocate a new ADT object on the heap. */
ssm_value_t ssm_new_adt(uint8_t val_count, uint8_t tag);

/** Access the field of an ADT object. */
ssm_adt_field(v, i) \

(&*container_of((v).heap_ptr, struct ssm_adt1, mm)->fields)i

Corresponding functions in LibSSM.hs, which call the C quasiquotation library:

-- | @ssm_new_adt@, allocate a new ADT object on the heap.
new_adt :: Int -> DConId -> C.Exp
new_adt val_count tag = cexp|ssm_new_adt($uint:val_count, $id:tag)|

-- | @ssm_adt_field@, access the @i@th field of an ADT object. Assignable.
adt_field :: C.Exp -> Int -> C.Exp
adt_field v i = cexp|ssm_adt_field($exp:v, $uint:i)|

1

One of the first tasks at hand was to update codegen.hs to make use of these in functions
Lib.SSM wherever possible. Here is an example of a change I made to codegen.hs to use the
updated runtime system. In the following code snippets, the code for allocating and initializing an
ADT is cleaned up.

Snippet from old codegen.hs, hard coding ssm.h identifiers:

let alloc = citem|$exp:tmp = $id:ssm_new($int:sz,$id:tg);|
let initField = (\y i ->

citem| $exp:tmp->$id:payload$uint:i = $exp:y;|
)

let initFields = zipWith initField argVals 0 :: Int, 1 ..

Snippet from updated codegen.hs, making use of LibSSM.hs:

let alloc = citem|$exp:tmp = $exp:(new_adt sz tg);|
let initField = \y i -> citem|$exp:(adt_field tmp i) = $exp:y;|
let initFields = zipWith initField argVals 0 :: Int, 1 ..

While the changes to codegen.hs themselves were relatively mechanical, this newly added layer
of abstraction decreased code duplication and made the code generation process more modular
overall.

1.2 Updating TypeChecker.hs, and HM.hs: colors.ssl

After updating ADT code generation to work with the updated runtime system, I moved to the
middle of the compiler pipeline to update SSLANG’s typechecker and type inference algorithm to
work with ADTs. Most of the work at this stage included augmenting the type inference state to
include information from previously parsed type definitions. Let’s consider an example SSLANG
program, colors.ssl, to make this idea more concrete.

type Color
White
Black
RGB Int Int Int

println (cout : & Int) (n : Int) -> () =
// omitted for brevity; see appendix

printColor (cout : & Int) (c : Color) -> () =
// omitted for brevity; see appendix

main (cout : & Int) -> () =
let licorice = Black
let lemon = RGB 255 255 0
let lime = RGB 161 242 0
printColor cout lime
printColor cout lemon
printColor cout licorice

To type check this program, one needs to know that the arguments to data constructor RGB
should each be of type Int, and that an instance of RGB or Black is an instance of type Color. This

2

type information comes from the ADT type definition at the top of the program, and needs to be
accessible while the type checker traverses main’s abstract syntax tree.

For this reason, I augmented the type inference monad state, inferstate, with two maps, dCon-
Type and dConArgType, which mapped data constructors to their type constructor and data
constructors to their list of argument types respectively:

-- | Inference State.
data InferState = InferState

{ varMap :: M.Map I.VarId Classes.Scheme
, equations :: (Classes.Type, Classes.Type)
, unionFindTree :: M.Map Classes.Type Classes.Type
, count :: Int
, dConType :: M.Map I.DConId Classes.Scheme
, dConArgType :: M.Map I.DConId Classes.Type
}

I also made sure to fill in these maps with relevant information from the program node’s type
definitions before type inference took place:

-- | ’inferProgram’ @p@ infers the type of all the
programDefs of the given program @p@.

inferProgram :: I.Program Ann.Type -> Compiler.Pass (I.Program Classes.Type)
inferProgram p = runInferFn $ do

typeDefs’ <- recordADTs $ I.typeDefs p
recordFDefs $ I.programDefs p
defs’ <- inferProgramDefs $ I.programDefs p -- occurs after recordADTs
return $ I.Program { I.programDefs = defs’

, I.programEntry = I.programEntry p
, I.typeDefs = typeDefs’
}

While implementing recordADTs, I ran into some type checking errors and asked Xijiao Li for
feedback and guidance. She helped update HM.hs to typecheck ADTs correctly, pointing out that
the type of a data constructor is only its type constructor when that data constructor is nullary!
The rest of the time (when a data constructor possesses arguments), the type of a data constructor
is actually a function that returns an ADT. Xijiao added the function buildDConType (a helper for
recordADTs) to the HM.hs file in my branch which highlights this distinction and fixed the final
bug in ADT type inference. A call to recordADTs will process the Color type definition,

type Color
White
Black
RGB Int Int Int

and fill in the the dConType and dConArg type like so:

// dConType :: M.Map I.DConId Classes.Scheme
(Black, Color)
(White, Color)
(RGB, Int -> Int -> Int -> Color)

3

// dConArgType :: M.Map I.DConId [Classes.Type]
(Black, [])
(White, [])
(RGB, [Int, Int, Int])

Since SSLANG is a functional language, treating a data constructor like a function at the type
inference stage makes sense. In fact, to further extend the functionality of ADTs, we needed to
“treat data constructors like functions” at the code generation step as well.

1.3 Partially Applied Data Constructors: mixingColors.ssl

The addition of closure code generation to the main codebase in early April provided support for
partial application of functions in SSLANG. However, due to a distinction made between functions
and data constructors at the code generation level, partial application of data constructors in
SSLANG still wasn’t possible. Now that the simplest of ADT programs worked successfully end-
to-end, our next goal was to support partial application of data constructors. This could be easily
attained by wrapping fully applied data constructors inside a function, essentially creating a top-
level “constructor function” for each data constructor. Let’s use another example, mixingColors.ssl,
to make our discussion more concrete.

type Color
White
Black
RGB Int Int Int

println (cout : & Int) (n : Int) -> () =
// omitted for brevity; see appendix

printColor (cout : & Int) (c : Color) -> () =
// omitted for brevity; see appendix

main (cout : & Int) -> () =
let print = printColor cout
let lime = RGB 161 242 0
let base = RGB 255 147
print (base 0) // orange
print (base 255) // rose
print (base 142) // peach
print lime

With our current code generation schema, fully applied data constructors like lime do indeed have
a corresponding C code translation.

let lime = RGB 161 242 0
// corresponds to a block of C code statements
acts->__tmp_0 = ssm_new_adt(3U, RGB);
ssm_adt_field(acts->__tmp_0, 0U) = ssm_marshal(161);
ssm_adt_field(acts->__tmp_0, 1U) = ssm_marshal(242);
ssm_adt_field(acts->__tmp_0, 2U) = ssm_marshal(0);
acts->lime = acts->__tmp_0;

4

Partially applied data constructors, in contrast, do not.

let base = RGB 255 147
// corresponds to ???

Instead of directly translating lime to block of C statements, consider wrapping code for a fully
applied data constructor inside a top level constructor function:

__RGB (__arg0 : Int) (__arg1 : Int) (__arg2 : Int) -> Color =
RGB __arg0 __arg1 __arg2

Which then corresponds to a C function:

void __step___RGB(ssm_act_t *actg)
{

act___RGB_t *acts = container_of(actg, act___RGB_t, act);

switch (actg->pc) {

case 0:
;
acts->__tmp_0 = ssm_new_adt(3U, RGB);
ssm_adt_field(acts->__tmp_0, 0U) = acts->__arg0;
ssm_adt_field(acts->__tmp_0, 1U) = acts->__arg1;
ssm_adt_field(acts->__tmp_0, 2U) = acts->__arg2;

default:
break;

}
*acts->__return_val = acts->__tmp_0;

__leave_step:
ssm_leave(actg, sizeof(act___RGB_t));

}

Now fully applied data constructors simply translate to a fully applied function. By extension,
partially applied data constructors translate to a partially applied function. Once data constructors
become functions, they can make use of SSLANG’s closure representation and get partial application
for free!

main (cout : & Int) -> () =
let print = printColor cout
let lime = __RGB 161 242 0
let base = __RGB 255 147
...

In PR 85, I added an IR to IR transformation pass to the compiler called DConToFunc.hs,
which created constructor functions for each user defined type and replaced all data constructor
applications with calls to that data constructor’s corresponding constructor function.

Before DConToFunc.hs pass:

5

main (cout : & Int) -> () =
let print = printColor cout // :: Color -> ()
let lime = RGB 161 242 0 // :: Color
let base = RGB 255 147 // :: Int -> Color

After DConToFunc.hs pass:

__RGB (__arg0 : Int) (__arg1 : Int) (__arg2 : Int) -> Color =
RGB __arg0 __arg1 __arg2

main (cout : & Int) -> () =
let print = printColor cout // :: Color -> ()
let lime = __RGB 161 242 0 // :: Color
let base = __RGB 255 147 // :: Int -> Color
...

In my first iteration of dConToFunc.hs, I implemented an optimization which excluded fully ap-
plied data constructors from this transformation process. The idea here was that fully applied
data constructors don’t actually need a closure object, so we could save heap space by directly
translating these without a corresponding function call. During a code review, Professor Stephen
Edwards advised me to remove this optimization from dConToFunc.hs for simplicity, and to save
this optimization for a later pass in the compiler. Removing this optimization greatly simplified
my code.

Since the dConToFunc pass runs after type inference, the task of generating IR level constructor
functions included type annotating them correctly. Manually coding the types of these constructor
functions emphasized for me the importance of viewing data constructors as functions.

RGB :: Int -> (Int -> (Int -> Color))
RGB 255 :: Int -> (Int -> Color)
RGB 255 147 :: Int -> Color
RGB 255 147 142 :: Color

Having previously worked on the code generation side of the compiler all last semester, I’d spent
the majority of my time viewing data constructors as a single, fully applied unit. I realize now that
while a data constructor and its arguments can still be viewed this way, it can also be viewed as
a nested application expression, with each nested sub-expression containing a different type. This
latter view helps me understand how algebraic data types are less extensions of and more manifest
pieces in the world of functional languages.

1.4 Pretty Printing the IR

An important debugging tool for any compiler under development is its pretty printer. After
completing partial application of data constructors, I worked on issue 51, “Prettify pretty printer”,
aiming to make the output of the IR pretty printer look like readable user-written source code.
The current pretty printer output, nicknamed “spaghetti” implemented the pretty typeclass from
the haskell module prettyprinter over each node of SSLANG’s intermediate representation. Here is
the spaghetti output for an abbreviated version of colors.ssl:

(__RGB,(fun __arg0
{(fun __arg1 {(fun __arg2 {((((RGB: (((Int32 -> Int32) -> Int32) -> (Color)))
(__arg0: Int32): (Int32 -> (Color)))

6

(__arg1: Int32): ((Int32 -> Int32) -> (Color)))
(__arg2: Int32): (Color))}: (Int32 -> (Color)))}:
(Int32 -> (Int32 -> (Color))))}: (Int32 -> (Int32 -> (Int32 -> (Color))))))
(main,(fun cout
{((let {lime = {((((__RGB: (Int32 -> (Int32 -> (Int32 -> (Color)))))
(161: Int32): (Int32 -> (Int32 -> (Color)))) (242: Int32): (Int32 -> (Color)))
(0: Int32): (Color))}};
((let {base = {(((__RGB: (Int32 -> (Int32 -> (Int32 -> (Color)))))
(255: Int32): (Int32 -> (Int32 -> (Color)))) (147: Int32):
(Int32 -> (Color)))}}; ((): ())): ())): ())}: ((&Int32) -> ())))

While this output is difficult to read, it represents an accurate, one-to-one representation of our
IR. I’d previously made use of this detailed spaghetti output when checking the correctness of my
dConToFunc pass, especially the typing of the generated constructor functions. This experience
made me hesitant to throw away potentially useful information for the sake of clarity. In an attempt
to preserve the original pretty printer output, I built a typeclass called format on top of pretty,
and added a flag to turn type annotations on and off. The format typeclass would call pretty to
get the barebones representation of a piece of the IR, then wrap it in whitespace and indentations
accordingly. To complicate matters, format also performed some IR simplifications like un-nesting
function application, which caused it to completely replace a call to pretty for certain IR nodes.

During a code review, John Hui and I discussed the best way to organize the revised pretty
printer code. Acknowledging both the value of the detailed spaghetti output and the need for a
clearer pretty printed output, we decided to preserve spaghetti in a separate typeclass, and make
the format typeclass the default pretty printer output (take the implementation of format and put
it in pretty, and put the old pretty implementation in a separate typeclass). We decided to remove
type annotations from the default pretty printer output for readability and simplicity; a pretty
printer with more fine tuned/selective type annotations will be left for a future PR. The current
pretty printed output for the abbreviated colors.ssl on my pretty-print branch appears as follows:

type Color
White
Black
RGB Int Int Int

__RGB (__arg0 : Int) (__arg1 : Int) (__arg2 : Int) -> Color =
RGB __arg0 __arg1 __arg2

main (cout : &Int) -> () =
let lime = __RGB 161 242 0
let base = __RGB 255 147
()

It’s significantly more readable than spaghetti, but there’s still much room to grow! In particu-
lar, the option for selective type annotations mentioned earlier, and minimal parentheses (currently
pretty printed output is correct, but may include unnecessary parentheses) could be added. Finally,
I updated our regression tests script runtests.sh to test the pretty printer. For each test program,
the script checks

1. Can the compiler produce pretty printed IR?

7

2. Can the compiler read in this pretty printed IR as source and produce the same output IR?

3. Can the compiler read in this pretty printed IR and produce an executable that behaves the
same as the original compiled source program?

All regression tests are passing, and barring some few final tweaks, my pretty-print PR is ready to
merge into the main codebase. I expect to make the final changes and merge this PR in the next
couple days.

2 Example SSLANG Programs

Near the end of the semester, members of the SSLANG research group participated in a mini
hackathon, writing example SSLANG programs on a slightly updated branch off the main codebase
called platform-builds.

2.1 A Big Number Library

I implemented the start of a big number library(a library for numbers unbounded in size) in SS-
LANG. The type Number represents a natural number of any size in decimal format, and subsequent
functions define operations on the Number data type. A Number is a list of Digits.

type Digit
Zero
One
Two
Three
Four
Five
Six
Seven
Eight
Nine

type Number
Nums Number Number
Dig Digit

Notable functions are the itoNum function, which takes a regular SSLANG integer and converts it
to a big number, and printNum which prints a big number to the screen.

// some helper functions omitted for brevity; see appendix

itoNum (i : Int) -> Number =
match (i > 10)

0 = Dig (itod i)
_ = let r = i % 10

let q = i / 10
Nums (itoNum q) (Dig (itod r))

8

printNum (cout : & Int) (n : Number) -> () =
match n

Dig dig = print cout (dtoc dig)
Nums d tl = printNum cout d

printNum cout tl

I also created a bool type to return the result of comparison between two big numbers.

type Bool
True
False

// eqDigit omitted for brevity; see appendix

eqNumber (n : Number) (n2 : Number) -> Bool =
match n

Dig d = match n2
Dig d2 = eqDigit d d2
_ = False

Nums d tl = match n2
Nums d2 tl2 = match (eqNumber d d2)

True = match (eqNumber tl tl2)
True = True
_ = False

_ = False
_ = False

2.2 Animated Wheel

While arguably trivial, wheel3.ssl is by far my favorite SSLANG program. It animates a rotating
line in the console window, simulating a spinning “wheel”.

print (cout : & Int) (n : Int) -> () =
let clear = 13 // ’\r’
after 10, cout <- clear
wait cout
after 100000000 , cout <- n
wait cout

main (cint : &Int) (cout : & Int) -> () =
let left = 92 // ’\’
let vert = 124 // ’|’
let right = 47 // ’/’
let horz = 45 // ’-’
loop

print cout left
print cout vert
print cout right
print cout horz

9

I’m impressed by SSLANG’s ability to express framerate without the need for an explicit counter
variable. While the current wheel3.ssl program is not framerate independent, I imagine that delta
time, a concept crucial for game programming, could be expressed elegantly using SSLANG’s
runtime value ssm_now.

3 Conclusion / Next Steps

I see work on SSLANG types taking a number of directions. With ADTs fully integrated into the
compiler pipeline, we can start writing standard libraries, and even implement built-in types like
booleans, characters, and strings with ADTS (provided they’re paired with some front end syntax).
Will SSLANG support some kind of arrays? What about packed data types, mentioned in my
previous report? With the introduction of small built in types like characters, will we implement
packed ssm values in codegen.hs to save heap space?

I hope to continue developing my SSLANG hackathon projects. With wheel3.ssl complete, I
can see an ASCII animated flappy bird hopping on the SSLANG horizon.

References

1. Stephen A. Edwards and John Hui. The Sparse Synchronous Model. In Forum on Specifi-
cation and Design Languages (FDL), Kiel, Germany, September 2020.

2. Leijen, Daan, et al. Prettyprinter, 2000, https://hackage.haskell.org/package/prettyprinter-
1.7.1/docs/Prettyprinter.htmlg:2.

3. Mainland, Geoffrey. Language.C.Quote, 2010, https://hackage.haskell.org/package/language-
c-quote-0.13/docs/Language-C-Quote.html.

Appendix

A colors.ssl

type Color
White
Black
RGB Int Int Int

println (cout : & Int) (n : Int) -> () =
after 10, cout <- n
wait cout
after 10, cout <- 10 // ’\n’
wait cout

printColor (cout : & Int) (c : Color) -> () =
match c

White = println cout 87 // ’W’
Black = println cout 75 // ’K’
(RGB 255 255 0) = println cout 89 // ’Y’

10

(RGB 161 242 0) = println cout 71 // ’G’
_ = println cout 63 // ’?’

main (cout : & Int) -> () =
let licorice = Black
let lemon = RGB 255 255 0
let lime = RGB 161 242 0
printColor cout lime
printColor cout lemon
printColor cout licorice

Output:

G
Y
K

B mixingColors.ssl

type Color
White
Black
RGB Int Int Int

println (cout : & Int) (n : Int) -> () =
after 10, cout <- n
wait cout
after 10, cout <- 10 // ’\n’
wait cout

printColor (cout : & Int) (c : Color) -> () =
match c

(RGB 161 242 0) = println cout 71 // ’G’
(RGB 255 147 b) =

match b
0 = println cout 79 // ’O’
142 = println cout 80 // ’P’
255 = println cout 82 // ’R’
_ = println cout 63 // ’?’

White = println cout 87 // ’W’
Black = println cout 75 // ’K’
_ = println cout 63 // ’?’

main (cout : & Int) -> () =
let print = printColor cout
let lime = RGB 161 242 0
let base = RGB 255 147

11

print (base 0) // orange
print (base 255) // rose
print (base 142) // peach
print lime

Output:

O
R
P
G

C numbers4.ssl

// incomplete big number library
// - integer to big num conversion
// - big num printing complete
// - big num equality check
// - fixes numbers3.ssl by removes Nil from Number’s ADT definition
// - TODO: successor function!

type Bool
True
False

type Digit
Zero
One
Two
Three
Four
Five
Six
Seven
Eight
Nine

type Number
Nums Number Number
Dig Digit

btos b : Bool -> Int =
match b

False = 70
True = 84

dtoc (n : Digit) -> Int =

12

match n
Zero = 48
One = 49
Two = 50
Three = 51
Four = 52
Five = 53
Six = 54
Seven = 55
Eight = 56
Nine = 57

eqZero n : Digit -> Bool =
match n

Zero = True
_ = False

eqOne n : Digit -> Bool =
match n

One = True
_ = False

eqTwo n : Digit -> Bool =
match n

Two = True
_ = False

eqThree n : Digit -> Bool =
match n

Three = True
_ = False

eqFour n : Digit -> Bool =
match n

Four = True
_ = False

eqFive n : Digit -> Bool =
match n

Five = True
_ = False

eqSix n : Digit -> Bool =
match n

Six = True
_ = False

13

eqSeven n : Digit -> Bool =
match n

Seven = True
_ = False

eqEight n : Digit -> Bool =
match n

Eight = True
_ = False

eqNine n : Digit -> Bool =
match n

Nine = True
_ = False

eqDigit (n : Digit) (n2 : Digit) -> Bool =
match n

Zero = eqZero n2
One = eqOne n2
Two = eqTwo n2
Three = eqThree n2
Four = eqFour n2
Five = eqFive n2
Six = eqSix n2
Seven = eqSeven n2
Eight = eqEight n2
Nine = eqNine n2

itod (i :Int) -> Digit =
match i

0 = Zero
1 = One
2 = Two
3 = Three
4 = Four
5 = Five
6 = Six
7 = Seven
8 = Eight
_ = Nine

itoNum (i : Int) -> Number =
match (i > 10)

0 = Dig (itod i)
_ = let r = i % 10

let q = i / 10
Nums (itoNum q) (Dig (itod r))

14

printNum (cout : & Int) (n : Number) -> () =
match n

Dig dig = print cout (dtoc dig)
Nums d tl = printNum cout d

printNum cout tl

eqNumber (n : Number) (n2 : Number) -> Bool =
match n

Dig d = match n2
Dig d2 = eqDigit d d2
_ = False

Nums d tl = match n2
Nums d2 tl2 = match (eqNumber d d2)

True = match (eqNumber tl tl2)
True = True
_ = False

_ = False
_ = False

print (cout : & Int) (c : Int) -> () =
after 10 , (cout : & Int) <- c
wait (cout : & Int)

main (cint : & Int) (cout : & Int) -> () =
let x = (Nums (Dig One) (Nums (Dig Nine) (Dig Nine)))
let y = (Nums (Dig Five) (Nums (Dig Five) (Dig Zero)))
print cout (btos (eqNumber x x))
print cout (btos (eqNumber x y))
print cout 10
printNum cout (Dig Nine)
print cout 10
printNum cout (itoNum 199)
print cout 10
printNum cout (itoNum 99)
print cout 10
printNum cout (itoNum 9)
print cout 10
printNum cout (itoNum 2199)
print cout 10
printNum cout y
print cout 10

Output:

TF
9

15

199
99
9
2199
550

16

	Integrating ADTs + Pretty Printing
	Updating Codegen.hs
	Updating TypeChecker.hs, and HM.hs: colors.ssl
	Partially Applied Data Constructors: mixingColors.ssl
	Pretty Printing the IR

	Example SSLANG Programs
	A Big Number Library
	Animated Wheel

	Conclusion / Next Steps
	colors.ssl
	mixingColors.ssl
	numbers4.ssl

