
Extending SSLANG’s Simplifier Pass
Eric Feng, Emily Sillars

Columbia University
{ef2648,ems2331}@columbia.edu

ABSTRACT
Static inlining and match arm elimination are both powerful op-
timization techniques that can improve the performance of a pro-
gramming language. In our previous report, we outlined our process
of designing and implementing an initial simple inliner for SSLANG.
We spent a large portion of the previous semester emulating the
GHC’s inliner as described in Jones’ and Marlowe’s Secrets of the
Glasgow Haskell Compiler Inliner [1]. This semester, after adding
polish to and resolving some subtle bugs in our initial inliner, we
depart from this reference implementation to specialize our opti-
mizations for SSLANG. Our approach deviates from the reference
implementation to cater to the unique characteristics of SSLANG
which, unlike Haskell, includes side effects. Additionally, we in-
corporate match arm elimination into our overarching “Simplifier”
pass, which previously only included the static inliner. By reveal-
ing and exploiting the connections between these techniques, we
enable the removal of multiple layers of match statements and
uncover additional opportunities for optimization.

1 OVERVIEW
To address the challenges posed by side effects in SSLANG, we
implemented a function that discerns when side effects may occur
within a given context. This feature helps prevent unwanted inlin-
ing in scenarios where preserving the order of operations is crucial
to maintaining program correctness.

Additionally, we extend the inlining pass to handle the inlining
of scrutinees of match statements in SSLANG. From doing so, we
were able to introduce match arm elimination, a technique that
removes redundant match arms during the inlining process. By an-
alyzing the match expressions and associated patterns, we identify
cases where certain match arms are guaranteed to be unreachable
or have no effect on program behavior. We can then completely
rewrite these redundant match expressions as let expressions. This
optimization not only reduces code size but also eliminates unnec-
essary branching and scrutinee evaluation, leading to more efficient
execution.

By repeatedly applying these techniques, we can unveil multiple
layers of redundant match statements, exposing opportunities for
further optimization. In this sense, the interplay between the inliner
and match arm elimination process in the Simplifier provides a
mutually beneficial relationship.

2 ADDRESSING SIDE EFFECTS
Our initial inliner implementation, despite passing all regression
tests, incorrectly ignored SSLANG side effects! Consider the exam-
ple program below.

E6901: Projects In Computer Science, ,
2023.

2.1 Motivating Example
// print single digit number; account for ascii offset
putd cout_ c =

after 1, cout_ <- (c + 48)
wait cout_

f r =
r <- deref r + 1
deref r

main cin cout =
let r = new 0
let x = f r // 1
let y = f r // 2
putd cout (x + y + y) // 1 + 2 + 2

Occurrence analysis would mark r as Multiunsafe, x as
OnceSafe, and y as Multiunsafe. Then the simplifier’s
PreInlineUnconditionally phase goes ahead and inlines
x, producing:
main (cin : _t46) (cout : (& Int32)) -> () =

let r = new 0
let y = f r
putd cout (f r + y + y) // 2 + 1 + 1

After inlining, the semantics of the original program has changed;
4 is printed instead of 5! This is a serious flaw in our initial inliner’s
implementation. The problem stems from the right-hand side of r,
f r. Let’s take a step back for a moment.

In the Haskell compiler, if a binder x is marked Oncesafe, the
Haskell simplifier can go ahead and inline x without looking at its
right hand side. Whether x gets evaluated before or after the evalu-
ation of y has no effect on program semantics, since all functions
in Haskell are pure.

In contrast, the right hand side of the SSLANG binder xmodifies
is a function call that modifies a mutable object. The call to f here
is impure, determining an exact evaluation order for x and y. Due
to its reference types, the SSLANG simplifier cannot, in fact, un-
conditionally inline anything. It must always check the right-hand
side of a binder before inlining.

2.2 isPure Predicate
We introduce the isPure predicate, which we use to inspect the
right-hand side of binders marked Oncesafe before proceeding to
inline. Any operation on a reference type we consider impure. We
conservatively mark function applications as impure as well. While
it is certainly possible that a function application might be pure, the
analysis needed to determine whether a particular function is pure
balloons quickly and is susceptible to cycles frommutually recursive
functions. We choose to sidestep this complexity for now. Primitive



E6901: Projects In Computer Science, , Eric Feng, Emily Sillars

operations like arithmetic operations with only pure arguments
(variables, literals) are considered pure. In the same vein, Data
constructors with only pure arguments are also considered pure.

After enforcing use of the isPure predicate, the simplifier no
longer inlines x, as it recognizes the right-hand side as an impure
function application.

3 MATCH ELIMINATION
Inlining the scrutinee of a match expression exposes new opportuni-
ties for further inlining. Consider the following SSLANG program.

3.1 Motivating Example
type List

Cons Int List
Nil

putd cout_ c =
after 1, cout_ <- (c + 48)
wait cout_

main cin cout =
let test = Cons 4 (Cons 3 (Cons 9 Nil))
match test

Cons _ (Cons x (Cons y _)) = putd cout (x+y)
Cons _ g = putd cout 7
_ = putd cout 6

The occurrence analyzer marks test as Oncesafe. Next, the sim-
plifier examines the right-hand side of binder test with the isPure
predicate. Since the right-hand side is a data constructor containing
only other data constructors, literals, and variables, isPure returns
true, and the Simplifier proceeds to inline test.

main cin cout =
match Cons 4 (Cons 3 (Cons 9 Nil))

Cons _ (Cons x (Cons y _)) = putd cout (x+y)
Cons _ g = putd cout 7
_ = putd cout 6

After inlining, the match statement inside main becomes redundant;
a let expression suffices:

main cin cout =
let x = 3
let y = 9
putd cout (x+y)

Eliminating the match expression not only reduces code size but
also execution time. Evaluating scrutinees in SSLANG (with the
exception of integer scrutinees) requires checking the tag of a boxed
object, which is essentially a pointer dereference. Rewriting this
match as a let expression eliminates an unnecessary read from the
heap.

This example program is taken from inlining-ex-16.ssl, a new
regression test we added to our PR after implementing match elimi-
nation. Once our updates to the SSLANG simplifier are merged into
main, this program will indeed reduce to a nested let expression.

Notice that if the simplifier runs twice, this program would
reduce even further to

main cin cout =
putd cout (3+9)

Running the simplifier multiple times until a program remains
unchanged is an exciting next step for SSLANG optimization!

4 FUTUREWORK
Plentiful opportunities exist in enhancing the simplifier pass fur-
ther.

• Enhance Side Effect Analysis: While our approach incorpo-
rates a function to discern side effects in SSLANG, there
is area for further improvements in accurately identifying
and analyzing side effects. In particular, we can extend our
isPure predicate by analyzing the bodies of functions where
function application occurs.

• Enhance Static Inlining: The current inliner is still relatively
conservative with consideration to code/work duplication.
We only allow the inlining of binders in two situations: if
the binder is considered OnceSafe (which are binders that
occur once, not inside a lambda) or if binder occurs multiple
times (MultiUnsafe), and the right-hand side of this binder
reduces to a literal, variable or trivial data constructor appli-
cation. Future work could be done to analyze the context of
MultiUnsafe binders whose right-hand sides are non-trivial.
The decision to inline could be made more fine grained in
these situations by computing a cost function based on a
binder’s context, essentially deciding to inline on a case-by-
case basis. This strategy is known as CallSiteInline in Secrets
of the Glasgow Haskell Compiler Inliner [1] . However, ad-
ditional considerations would need to be taken relative to
the implementation in the GHC due to the existence of side
effects in SSLANG.

• Incorporate further optimizations: Static inlining and match
arm elimination are just two optimization techniques among
many. Future work could explore the integration of the sim-
plifier with other optimization strategies.

• Integration with other transformations: Future work could
explore the repeated application of our simplifier module
with the other IR transformations to reveal further optimiza-
tions found in other modules as well.

5 CONCLUSION
We present an extended simplifier for SSLANG which includes an
enhanced approach to static inlining relative to the inliner in the
previous simplifier and the introduction of match arm elimination.
Our modified simplifier pass (in a PR ready for review here) intro-
duces a function that is able to conservatively discern side effects.
Additionally, we are now able to inline binders that are scrutinees of
match statements, opening avenues for match-arm elimination. By
applying inlining and match arm elimination repeatedly, multiple
layers of match statements can be removed, leading to more concise
and efficient code.

REFERENCES
[1] Simon Peyton Jones and Simon Marlow. 2002. Secrets of the Glasgow Haskell

Compiler Inliner. J. Funct. Program. 12 (07 2002), 393–433. https://doi.org/10.1017/
S0956796802004331

https://github.com/ssm-lang/sslang/pull/161
https://doi.org/10.1017/S0956796802004331
https://doi.org/10.1017/S0956796802004331

	Abstract
	1 Overview
	2 Addressing side effects
	2.1 Motivating Example
	2.2 isPure Predicate

	3 Match Elimination
	3.1 Motivating Example

	4 Future Work
	5 Conclusion
	References

